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ABSTRA CT 
A fundamental issue which directly impacts the scal- 

ability of current theoretical neural network models to 
applicative hardware embodiments is the inherent and 
unavoidable concurrent asynchronicity of massively par- 
allel systems. We propose a mathematical framework for 
reconditioning additive-type models and derive a neuro- 
operator, based on the chaotic relaxation paradigm, 
whose resulting dynamics is neither "concurrently" syn- 
chronous nor "sequentially" asynchronous. Necessary 
and sufficient conditions guaranteeing concurrent asyn- 
chronous convergence are established in terms of con- 
tracting operators. Lyapunov exponents are also com- 
puted to charaterize the network dynamics and to ensure 
that throughput-limiting "chaotic" behavior in mod- 
els reconditioned with concurrently asynchronous algo- 
rithms was eliminated. 

1. Introduction 

Advances in our understanding of physical, electrical 
and organizational processes occurring in biological sys- 
tems, alongwith fundamental theoretical contributions 
by Grossberg Ill], Kohonen [16], Amari [2], and Hop 
field [13,14], have helped demonstrate the performance 
potential of artificial neural networks in solving tradi- 
tionally hard problems in pattern analysis, associative 
recall, adaptive control and in situ learning. Hopfield's 
illuminating contributions have extended the applicabil- 
ity of neuromorphic techniques to the solution of com- 
binatorially complex optimization problems [15]. In the 
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than the slowest neuron, but again, throughput suffers. 
Not only does such circuitry lack a biological basis, it 
also enforces rigid firing sequences that are often difficult 
to sustain because of signal leakages and component in- 
stability. Macukow et al [18], showed that in large-scale 
networks such self-induced pathological activation could 
destabilize the entire neuromorphic system. 

Even though the computational and paradigmatic 
gains expected from neuromorphic architec tures will 
manifest from systems built around massively parallel 
and analog hardware, discrete-timeaimulations on asyn- 
chronous multiprocessors remain the primary bench- 
marking testbed for large-scale problems, and therefore, 
the algorithmic implications of the "sequential" nature 
of neuronal interrogation in simulations cannot be ig- 
nored. In general, during synchronous computation the 
processors must communicate their partial results to 
each other, at  every instance of time specified by the 
precedence-constrained task graph obtained from the 
problem decomposition [4]. 'Hence, the distributed con- 
current algorithm are mathematically equivalent to the 
sequential algorithms. These overheads, in the form of 
load imbalance due to processor inactivity, lower pro- 
cessor utilization and enhance resource contention due 
to communication and coordination requirements, and 
lead to a severe performance degradation in real-time 
neural network applications [5]. For instance, dmulat- 
ing the sequentially asynchronous nature of backprop- 
agating networks on a concurrent computer introduces 
latencies, for which specific time bounds can be obtained 
in terms of the critical path of the corresponding task 
graph. Additionally, the existing approaches are lacking 
in fault tolerance, as updating decisions by a particular 
neuron require global interrogation, i.e., the status of 
each neuron to which it is connected. Failure to receive 
firing input from some inoperative neuron in the sequen- 

' tially asynchronous setup could lead to blocking of the 
entire network. Thus, a model is necessitated wherein 
each neuron is associated with a decision algorithm that 
requires only local information to reach globally optimal 
decisions, as in the cellular automata approach. This 
also precludes the necessity for neural signals or activa- 
tion potentials to remain stable for long intervals as in 
synchronous implementation. 

In this paper we introduce a mathematical frame- 
work for reconditioning artificial neural network algo- 
rithms such that their embodiments are truly asyn- 
chronous. For illustrative purposes, the following dis- 
cussion will focus on simple additive-type networks, but 
the ideas generalize in a straightforward fashion to more 
complex (e.g., shunting type ) models. Hereafter, we do 
not distinguish between the simulation of a neural net- 
work on a concurrent computer or its subsequent hard- 
ware implementation, i.e., a neuron is considered as a 
"virtual" computing processor. Besides yielding a closer 
emulation of biological information processing, this ap- 

proach is expected to providance guidance for large-scale 
fabrication of concurrent hardware. The organization of 
the remaining paper is as follows. In section 2 we present 
a characterization of asynchronous iterative computa- 
tion and introduce the chaotic relaxation paradigm. Sec- 
tion 3 describes the reformulation of the Hopfield model 
in terms of contracting neuro-operators. We further de- 
fine the necessary and sufficient conditions for conver- 
gence. To guide the implementation and validation of 
our asynchronous neuro-operator, we simulate an asso- 
ciative memory model in a concurrent environment in 
section 4. In section 5, we compute the Lyapunov ex- 
ponents, for both the existing and modified model, to 
provide a fundamental isight to the network dynamcis 
and to dispel potential misgivings as to the main origin 
of oscillatory behavior observed hitherto. 

2. Chaotic Relaxation Paradigm 

In order to obviate the throughput-limiting " Feigen- 
baum bottleneck" arising from an extensive usage of 
the cooperative problem-solving approach, and the re- 
sulting "sequentiality" in the neurodynamical activation 
profile, we introduce a chaotic relaxation paradigm in 
the neural network dynamics. It is inspired from the 
seminal work of Chazan and Miranker [8], who showed 
that chaotic relaxation schemes could significantly re- 
duce programming effort, communication overheads and 
turnaround time during concurrent computing on asyn- 
chronous multiprocessors. In our effort to design truly 
asynchronous neural networks we further draw motiva- 
tion from fixed point techniques by Baudet [6], Miellou 
[20], Kung [17] and Bertsekas [4]. But before introducing 
the chaotic relaxation schema in conjunction to neuro- 
computation, we briefly summarize key attributes ab- 
stracted from concurrent asynchronous computational 
algorithm, to reinforce the paradigmatic divergence of 
neurodynamic relaxation in existing models from the bi- 
ological phenomena and future hardware embodiments. 

2.1 Concurrent Asynchronous Computation 

In contrast to the synchronized iterative techniqua 
(see Kung [17]), the execution profile of concurrent asyn- 
chronous algorithms is not constrained by the underly- 
ing task decomposition graph for the problem [4]. Con- 
current tasks capable of uncoordinated execution are im- 
plemented as a collection of functionally, but not dynam- 
ically, cooperating processes, with no explicit dependen- 
cies to enforce waiting at synchronization points for the 
purpose of swapping partially computed results. Thus, 
instead of waiting for specific inputs from other tasks, 
they may continue, or terminate according to whatever 
information is available in the state variables. The com- 
putation per se is essentially iterative in nature, with 
the dynamics controlled by state variables and, possibly, 
previous history. 

1-620 



Thus, asynchronous computation provides an implic- 
effective strategy for designing systems capable of 

delivering high throughput and real-time operational 
responses, since the synchronization and coordination 
restrictions are eliminated, and computations can be 
carried out without having to wait to receive all the 

implied by the precedence constraints. Also, 
tic relaxations during asynchronous computa- 

tion stagger data communication and memory acceases, 
alleviating the Von Neumann bottleneck [3]. In a neural 
network model, this implies that in contradistinction to  
the existing schema, computational functions could be 
implemented using neurons that are allowed to fire with- 
out having to wait to receive excitatory or inhibitory 
input signals from all other neurons to which they are 
connected, in order to evaluate if a firing threshold is 
exceeded. 

In addition, asynchronous dynamics may lead to true 
fault tolerance, as it will enable neurons to remain idle 
for finite periods. This is analogous to the existence 
of "refractory" of recharging period in biological neu- 
rons [lo]. But more important is the implication for 
hardware embodiments. Elimination of inter-neuron de- 
pendence, facilitates immediate replacement (or rerout- 
ing) of the failed segment, and resumption of processing 
without disturbing or reinitializing the entire configu- 
ration. Another advantage is the potential for imple- 
mentation on large-scale heterogeneous computational 
ensembles, i.e., systems in which the different process- 
ing nodes may have different performance capabilities, 
to achieve hierarchical neuronal processing. The latter 
ability would lead to a reduction of complexity in inter- 
leaving operations, to  provide for unpredictable activ- 
ity fluctuations during neurocomputation. In summary, 
concurrently asynchronous dynamics defines an opera- 
tional framework that implicitly fers to that essential 
for neurocomputation. 

2.2 Concurrent Asynchronous Neurodynamics 

In the subsequent development of our theory on con- 
currently asynchronous neural networks, we adopt a 
terminology in line with the generalized definition of 
chaotic iterations, *originally introduced by Chazan and 
Miranker [8], and later generalized by Baudet [SI. Con- 
sider an additive-type neural network with N neurons, 
and let ii denote the continuous-valued configuration 
vector of neuron activations in 92" . Let the components 
of ii be given by ui, for i = 1 , .  , N. A temporal state 
sequence in terms of the neural coordinates ui will be de- 
noted by ui( t ) ,  for t = 0, l,.. . Let @ be the nonlinear 
network operator from 8" to 92", whose components 
will be expressed as pi( ul,  u2, . e .  , UN ). 

A concurrently asynchronous neural iteration, de- 
noted by the tuple ( 9, f i (O) ,  (, II, ), corresponding to 
the neuro-operator 8,  and starting with a given vector 

i i(O),  is then a sequence of state iter 
on %", defined recursively by: 

where St: 1 
rons that update during the 
dexes the availability of the 
updated state. Previous updati 
sumed tj(t) = t - 1. The 
1, 2, - 1 is a sequence of n 
rons, that fired during each successive iterate. Also, 
tc, = { (zl(t), ..., z ~ ( t ) ) .  I t = 1, 2, } denotes 
the latest update configuration for the network with re- 

assumptions are made on sets t and tc, : 
(a) zi(t) 5 t - 1 , t = 1, 2, 

quent neuronal update uses only 
state information; 

(b) ti(t), considered as a 

5 I St I 5 

neurons in the network; 

many often in the update-sets St, for t = 1,. 2, ... 
, i.e., 3 s < 00 such that each neuron is considered 
at least once in every s succ 

Manifestation of chaotic re 

(c) non-starvation condition [8], i.e., 

pdates. 

in networks with 
concurrent asynchronous updating can be intuited as 
follows: at some operating instant t, an idle neuron, i ,  
initiates the update state to ~f = ~ i ( i i ~ ~ ~ i ~ ) .  It 
the state ii(t) differs ii(t- 1) by a set of components 
{ U; I i E St 1, then the i-th neuron may update 
itself using state information aheady available from the 

a fully asynchronous operation, the most recently avail- 
able states could be selected. Alternately, in the vein 
of Chazan and Miranker [SI, a more restricted selection 

he choice of available 
uced no prior to some 
at f o r i  = 1, 2 , - . . ,  

t - zi(t) 5 k be satisfied. We now 
fixed number, k, of st 
the inequality 

neureoperator, @. 

2.3 Contraction Theorems 

The concept of contractio 
in the iterative solution of non 
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most useful [23] to express contraction in terms of vector 
norms, which induces a partial ordering on 8". 

Definition [23] : An operator (p : D c Q" + Q" 
is called a @-contraction on a set Do C D, if there 
exists a linear operator 0 E L(P) with the following 
properties : 

[i] I p(ii) - @(6) I 5 @ I t i  - ij I 
[ii] @ 2 0 
[iii] p ( 6 )  < 1 

Vt i ,  6 E Do 

The first property implies Lipschitz-continuity; in- 
deed @ is often referred to as the Lipschitz matrix of 
8. The latter requirements (non-negativity and spectral 
radius of 6 ) generalize the typical specification of the 
contractive constant used in conjunction with the usual 
norm on %" . The existance of a fixed point is then given 
by the following theorem. 

Contraction-Mapping [23] : Suppose that 8 : D C 
Q" - Q" is a @-contraction on the closed set Do c 
D, such that p(D,) c Do. Then, for any ii(0) E Do, 
the sequence ii(t + 1) = S[ii(i)] , t = 0,  1, 
converges to the only fixed point of 8 in Do, and the 
error estimate 

I a ( t )  - ii(oo) I 5 ( I - @ )-I 6 I i i ( t )  - q t - 1 )  I 
for t = 0, 1, ..., holds. 

Chazan and Mirankar [SI first applied these concepts 
to  establish the convergence of asynchronous iterations. 
Their results were later generalized by Baudet [3]. 

Baudet's Theorem : If 9 : %" - %" is a ip- 
contraction mapping on a closed subset D C Q" and 
if p ( D )  C D, then any asynchronous iteration cor- 
responding to $5 and starting with a vector ti(0) E D, 
converges to a unique fixed point of 9 in D. 

We now derive necessary and sufficient conditions 
for convergence of the concurrent asynchronous neuro- 
dynamics characterized by Eqs. (2.2.1). 

3. Asvnchronous Neuro-herator 

Amari [2] and others [12,13,15] have shown that, 
in general, the phenomenology of nonlinear neural net- 
works, modeled as adaptive dynamical systems, is es- 
sentially a phase space flow towards static attractors. 
Associative recall, combinatorial optimization, learning, 
etc. on the other hand, are merely different functional 
manifestations of this phenomenlogy, wherein the na- 
ture of activation neurodynamics exercises an integral 
regulatory influence on functional efficacy, stability and 
scalability. We exploit this commonality in dynamical 

behavior to derive in the sequel a contracting neuro- 
operator, that significantly enhances the scalability of 
existing systems to massively parallel asynchronous em- 
bodiments. 

Consider the temporal evolution of a fully connected, 
additive-type neurodynamical system, e.g., a Hopfield 
model defined by the following system of coupled differ- 
ential equations: 

U i  + ait(i = z j g j ( 7 j t t j )  + Ii. (3.1) 
i 

Here ui represents the internal state (e.g., mean soma 
potential ) of the i-th neuron, z j  denotes the synap- 
tic coupling from the j-th to the i - t h  neuron and Ii 
is the external input bias. The sigmoidal function gj 
modulates the neural response, 7 j  denotes the trans- 
fer function gain for the j-th neuron and ai repre 
sents the inverse of a characterisitic time constant or 
the decay scaling term. Let cpi(C) denote the i-th 
component of the asynchronous operator introduced in 
(2.2). Using Euler's difference approximation to the 
above system of continuous-time differential equations, 
i.e., ui = (U:+' - U:) / A, where A denotes the dis- 
cretization stepsize, the i-th component of the above 
defined Hopfield operator is given by 

pi(ti) = ui + A[ - aiui + 

Then for any two phase-space coordinates, i i , C  in the 
domain of attraction 

. .  

I Z j  g j ( 7 j u j )  + Ij 
i 

(3-2) 

cpj(C) - cpi(E) = (ui - v i )  ( 1 - Aai ) 

i 
+ AX Z j  [ g j ( 7 j ~ j )  - g j ( 7 j v j )  I (3.3) 

On taking the vector norm, the above system yields, 

I Vi(ii) - pi(E) I 5 I ai - vi 1 .  I 1 - Aai I + 
(3.4) AE I Z j  I * I g j ( 7 j u j )  - g j ( Y j u j )  I 

j 

We assume that for each neuron the response function, 
g j :  Q -+ [-1,+1], is of class C', and that I 4 15 
1. This is obviously the case for the usually consldered 
neural response functions , i.e., g(7u) = tanh(7u) or 
g(7u) = [l + e-Tu]-'. Then the Mean Value Theorem 
implies that there exists a t E Q such that, 

J 7 J  J - g j ( 7 j v j )  = g j ( % )  7 j  ( u j  - u j )  

Thus 
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Regrouping all terms, we obtain 
[ii] 

I pi(a)-pi(W) I 5 I 1 - Aai I * I l i  - Vi I + 
A 1 Zj 1 . I7j I . I iij - fjj I (3.6) Notice that the latter ineq 

relaxation regimes. 
j made "high gain" appro 

Let us now define a matrix 0 as follows: 

@ij = 11 - Aai I &j + A* 1 7j I * 1 Zj I (3.7) Asynchronous Associative Memory 

We see that 0 is nonnegative; furthermore, since 

I pi(a) - pi(g) I ,< aij I l j  - vj I 
i 

or equivalently 

IS(ii) - 8(W) I 5 0 * I ii - ij I (3.8) 

we deduce that the neuro-operator 8 is Lipschitzian with 
Lipschitz matrix 0. From Baudet's theorem, for 8 to 
converge to a fixed point in an appropriate basin of at- 
traction, the spectral radius of @ must be less than one. 
Now, using Bechenbach and Bellman's theorem [23] we 
can write 

The asynchronous methodol 
preceding section, was implemented on a hypercube 
multiprocessor [3] for Hopfie con tent associative 
memory model [14]. 

cations. In particular, our experimentation was aimed . 
at the following objectives: (a) verify algorithmic cor- 

necessary for contraction, 
mark computational effic 
updating regimes. 

.13), and; (e) bench- 
espect to the exieting 

(3.9) 
where p denotes any positive vector. In particular, we 
can chooee all vector components equal. The contraction 
then translates into 

m,v 0ij < 1 

0jj > 0 E 

) < l e  { i . (3.10) 

for all i ,  j .  This induces constrained interrelationships 
betmxn the values of ai,-A, 7j and zj, i.e., 

2 "- 

'U 

6 I 
H 

and 

I 1 - Aai I6ij + A I7j 11 Gj 1 > 0 (3.12) 

To fix the ideas, without loss of generality, con- 
sider simplest the situation where all gain parameters 
are equal to 7. Then convergence under a concurrently 
asynchronous regime will be guaranteed if one chooses, 
e.g., 

1 ai < - A [11 
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update yields the fastest rate of convergence. Recall, 
however, that it often suffers from, both horizontal as 
well as vertical oscillations [9]. In addition, it imposes 
severe clock synchronization constraints, the implica- 
tions of which were outlined in section 1. Though the 
concurrently asynchronous update mode was simulated 
in a partially concurrent (e.g., 32 neurons / hypercube 
node ) environment, convergence to the stored attractor 
indeed validates our methodology. Note that conver- 
gence in the latter case was achieved despite communi- 
cation delays on the hypercube and globally inconsistent 
state information, i.e., neurons on different nodes oper- 
ated assuming different states for the network. Also, as 
expected, the "sequentially" asynchronous mode led to 
the slowest convergence (over 1000 iterations). 
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Figure 2 : Chaotic oscillations with improper condi- 
tioning 

When the conditions, given by Eqs. (3.13) were 
violated, undesirable behavior abounded. The system 
failed to converge and oscillated instead, as depicted in 
figure 2. This behavior raises a hitherto unaddressed 
fundamental issue regarding network dynamics, i.e., the 
exact nature of noise observed in concurrent neural net- 
works. Is it due to horizontal oscillations, vertical os- 
cillations [9] or is it a manifestation of chaos, or merely 
numerical instability induced by discretizing continuous 
dynamical systems ? These issues are briefly taken up 
in the next section. 

5. Elimination of "Emergent" Chaos 

In contradistinction to prevalent notions on insta- 
bility in neural networks [9], that attribute oscillatory 
behavior mainly to the tolpology of the interconnection 
matrix, we hypothesize that it is primarily a manifes- 
tation of "emergent chaos" induced b y  ill-conditioned 

parameters in the model. This hypothesis is strength- 
ened by the following observations. Simulations have 
shown that the same type of model may exhibit radi- 
cally different dynamical behavior with slightly different 
parameters. For example, small perturbations in time 
scales, delay distribution, transfer gain etc., may lead 
the system to oscillate back-and-forth from one basin 
of attraction to another. Also many authors commonly 
adopt a debugging strategy for neural network simula- 
tions which involve "anecdotal" manipulation of param- 
eter space, essentially a combinatorial search for a sys- 
tem configuration that results in properly conditioned 
network dynamics. 

To validate our hypothesis on the manifestation of 
"emergent chaos" we have computed the largest Lya- 
punov exponent of the time series obtained from a m a p  
ping which follows the evolution of the average compo- 
nent difference from a stored memory. A number of dif- 
ferent approaches were additionally considered, and the 
detailed analysis is reported elsewhere [27]. Lyapunov 
exponents [26] essentially provide a dynamical diagnos- 
tic for measuring the exponential rates of convergence 
or divergence of phase trajectories. For a continuous dy- 
namical system in n-dimensional phase space, the i-th 
dimensional Lyapunov exponent is defined as, 

where pi ( t )  denotes the length of contracting / expand- 
ing principal ellipsoid axis, corresponding to the tem- 
poral deformation of the phase space. Any dynamical 
system characterized by a negative sum of Lyapunov 
exponents, but containing one or more positive terms 
is said to be chaotic, with the magnitude of such ex- 
ponents reflecting the time scale on which the system 
dynamics becomes unpredictable [26]. Our simulations 
for an ill-conditioned neural model ( A = 0.002, a = 
1 0 0 0 , ~  = 10000 and I Zj I = 28 ) led to a value of 

+91 for the largest exponent. Since A1 is positive, 
we conclude the system to be if not chaotic, at least 
exponentially stochastic ( since we did not compute the 
sum of all exponents ). Also, when the largest Lyaponov 
exponent was determined for a contracting concurrently 
asynchronous network (A = 0.002, a = 1 0 0 , ~  = 1 ), the 
value A1 = -49 , was found, thereby proving that our 
conditioning methodology eliminates emergent" chaoa 
in concurrent neuromorphic models. 

6. Conclusions 

This paper presents a radically different insight into 
the neurodynamical implications of "sequentially" asyn- 
chronous and synchronous neuronal algorithms. Despite 
significant advances in concurrent hardware technology, 
full realization of the potential advantages of neural pro- 
cessing in solving real-life problems has been severely 
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limited due to previous assumptions for asynchronicity. 
Electronic embodiments based on current mathematical 
frameworks lead to biological inconsistencies and require 
substantially complex circuitry. In a similar vein, such 
frameworks also limit the network scalability, stability 
and throughput in discrete-time simulations. It was hy- 
pothesized that, contrary to existing notions that at- 
tribute dynamical instability in the current models to 
the topology of the interconnection matrix, we ascribe 
it to "emergent chaos". Lyapunov exponents were com- 
puted to prove that improperly conditioned neurody- 
namical equations of motion do indeed exhibit chaotic 
relaxation behavior. 
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We exploited this insight to provide a strategy for 
systematically reconditioning the existing mathemati- 
cal framework for additive networks, such that their 
VLSI, optical and opto-electronic embodiments are truly 
asynchronous, and thereby, eliminate the network in- 
stability ascribed to "emergent" chaos. We derived tation 
a neuro-operator that enables chaotic relaxations to 

sary and sufficient conditions guaranteeing concurrently 

contraction mappings. Lyapunov exponents were calcu- 
lated for our proposed neuro-operator to ensure that 
the reconditioned system is devoid of chaotic behav- 
ior. Future directions include extension of our theory 
to shunting-type €81 neural networks. We also intend 
to theoretically analyze the implications of chaotic re- 
laxation on network parameters, such as synaptic effica- 
cies, transfer characteristics, network architecture and 
capacity. 
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